Our World is filled with complex challenges whose solutions matter deeply to society. These challenges are characterised by multiple scales in time and space, involving mechanisms at different levels. A number of modelling approaches have been used in the past. One such approach is based on building blocks, or fundamental constituents, put together to capture system characteristics. Another approach looks at the average properties of a limited sample to infer how the system behaves. Although these approaches have had some successes, there is an alternative; this we call ‘mesoscience’.
Mesoscience proposes that complexity arises from an inevitable compromise between competing factors, such as different mechanisms striving for dominance. Mesoscience bridges bottom-up and top-down approaches through multi-objective optimisation under constraints.
There have been notable successes in a number of chemical processing applications, and the question we are raising is whether this new methodology can be applied more widely. An International Panel has met and considers the approach may well be applicable to several other fields.
This Panel calls for more studies to be made for the application of mesoscience and to look for underlying common themes amenable to the development of a research methodology that we believe, in time, may well become a new branch of science, engineering and technology.